

1. A model of a ship is made to a scale of 3:400The surface area of the model is $7200~cm^2$ Calculate, in m^2 , the surface area of the ship.

3: 400
$$(3 cm)^{2}: (4m^{2})$$

$$9 cm^{2}: 16 m^{2}$$

$$(\frac{x^{16}}{4})_{3200}: 12800 m^{2}$$
Surface area (ship) = 12800 m²

2. ABCD is a rectangle with perimeter 28 m.

The length of AB is 8m.

Calculate the length, in m, of the diagonal $A\mathcal{C}$ of the rectangle.

3. Here is hexagon ABCDEF.

All the corners of ABCDEF are right angles.

Calculate the area, in
$$cm^2$$
, of $ABCDEF$.

area (1) = 8×9
= $31cm^2$

area (2) = 5×10
= $100cm^2$

total area = $31 + 100$
= $131cm^2$

4.

The diagram shows a quadrilateral ABCD in which

$$BC = 25 cm \ AB = 50 cm \ CD = 35 cm \ angle \ BAD = angle \ CDA = 90^{\circ}$$

Calculate the perimeter, in cm, of quadrilateral ABCD.

$$x = \int_{-25^{2}}^{25^{2}} 515^{2}$$

$$= 20cm$$
perimeter = 20 + 35 + 25 + 50
$$= (30cm)$$

5. The volume of a solid right circular cylinder is 225 cm^3 The height of the cylinder is 7 cm.

Work out the total surface area, in cm^2 to 3 significant figures of the cylinder.

Vol:
$$\pi r^2 h$$

 $\pi \times \gamma^2 \times \exists = 225$
 $\gamma^2 = 10.231$
 $\gamma = 3.2$
SA = $2\pi r^2 + 2\pi rh$
 $= 2 \times \pi \times 3.2^2 + (2 \times \pi \times 3.2 \times \exists)$
= 205cm²
The Maths

6. The diagram shows a trapezium.

The lengths of the parallel sides of the trapezium are (3x + 2) cm and (2x - 1)cm.

The height of the trapezium is 4 cm.

Given that the area of the trapezium is $28 cm^2$

find the value of x

$$\frac{1}{2}(a+b)h = 28$$

$$\frac{1}{2}(2x-1+3x+2)4 = 2$$

$$5x+1=14$$

$$5x=13$$

$$x = \frac{13}{5}$$

$$= 2.6$$

7. A and B are two similar solids.

The volume of A is $500 cm^3$

The volume of B is $32 cm^3$

The total surface area of A is 250 cm^2

Calculate the total surface area, in cm^2 , of B.

$$\frac{x^{3}}{15625 \ 000} = \frac{32}{15625}^{2}$$

The diagram shows trapezium ABCD in which

$$AB = 16cm$$
 $DC = 20 cm$ $\angle BCD = 68^{\circ}$ $\angle BAD = \angle CDA = 90^{\circ}$ Calculate the area, in cm^2 to 3 significant figures, of trapezium $ABCD$

Figure 1 shows triangle ABC

The point D lies on AB and the point E lies on AC such that DE and BC are parallel.

$$AD = 8 cm$$
 $DE = 3 cm$ $AE: EC = 1:2$ $\angle DEA = \angle BCA = 90^{\circ}$

Calculate the area, in cm^2 to 2 significant figures, of the region $\it BCED$ shown shaded in the diagram.

AE =
$$\frac{1}{2} \cdot \frac{3^{2}}{6^{4} \cdot \frac{4^{4}}{9^{4}}}$$

EC = $\frac{3 \cdot 4^{2} \times 2^{2}}{6^{4} \cdot \frac{4^{4}}{9^{4}}}$

Sin (DAE) = $\frac{3}{8}$

DAE = $\frac{3}{8}$

DAE = $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$

DAE = $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$

DAE = $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{3}{8}$
 $\frac{9}{8.99}$
 $\frac{9}{8}$
 $\frac{1}{9}$
 $\frac{1}{9}$

Area of trapezium =
$$\frac{1}{2}(a+b)h$$